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A Motivating Problem

Problem: A fish population starts out at 50 fish and grows 4-fold each
year with 100 fish dying each year

Mathematical Formalism

Population at time t is pt

Recurrence: pt = 4 · pt−1 − 100

Base case: p0 = 50

Natural question: What is pt for any t?
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A Fish population

Recurrence and Base Case: pt = 4 · pt−1 − 100, with p0 = 50

Iterative Calculations

p0 = 50

p1 = 100

p2 = 300

p3 = 1100

p4 = 4300

We want a closed form!
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Generating functions

A generating function takes a sequence of real numbers and makes it the
coefficients of a formal power series.

Generating Function

Let {fn}n≥0 be a sequence of real numbers. Then the formal power series

F (x) =
∑
n≥0

fnx
n

is called the ordinary generating function of the sequence {fn}n≥0.
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Formal Power Series

When using generating functions we will look at power series formally,
meaning we ignore convergence.

Convergence

Consider the power series expansion

1

1− x
= 1 + x + x2 + . . . .

When |x | < 1, you can plug in x and the RHS = LHS. For example, when
x = 1

2 :

1

1− 1/2
= 2 = 1 +

1

2
+

1

4
+

1

8
+ . . . .
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Formal Power Series Cont.

Example Cont.

1

1− x
= 1 + x + x2 + . . . .

When |x | > 1, plugging in x does not yield meaningful equalites. Consider
x = 2:

1

1− 2
= −1

2
6= 1 + 2 + 4 + 8 + . . . =∞.

Formal power series: Do not plug in values for x , because it is
meaningless! We only care about the coefficients of the series.
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Generating Functions for Solving Fish Population Problem

Define the generating function:

G (x) =
∑
n≥0

pnx
n.

First few terms: G (x) = 50 + 100x + 300x2 + . . .

Express Recurrence: pt+1 = 4 · pt − 100∑
n≥0

pn+1 · xn+1 =
∑
n≥0

(4 · pn − 100) · xn+1

=
∑
n≥0

4 · pn · xn+1 −
∑
n≥0

100 · xn+1
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Solving Fish Population Problem Cont.

Generating Function equality:∑
n≥0

pn+1 · xn+1 =
∑
n≥0

4 · pn · xn+1 −
∑
n≥0

100 · xn+1

Left hand side: G (x)− p0, since it’s missing the first term of the
sequence {pn}n≥0
Right hand side term 1: 4x · G (x)

Right hand side term 2: −100x
1−x , since 1

1−x = 1 + x + x2 + . . .

Recurrence in terms of G (x):

G (x)− p0 = 4x · G (x)− 100x

1− x
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Solving Fish Population Problem Cont.

Want to solve following equation for closed form for pt :

G (x)− p0 = 4x · G (x)− 100x

1− x

After rearranging,

G (x) =
p0

1− 4x
− 100x

(1− x)(1− 4x)
.

We have obtained an explicit formula for the G (x), the generating
function of the sequence {pn}.
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Finding formula for coefficients

Want closed form for coefficient of xn in G (x) because this is pn.

G (x) =
p0

1− 4x
− 100x

(1− x)(1− 4x)
.

First term’s contribution is easy to calculate:

p0
1− 4x

= 50
∑
n≥0

(4x)n = 50
∑
n≥0

4nxn

Aneesha Manne, Lara Zeng Generating Functions 10 / 20



Finding formula for coefficients cont.

Expanding 2nd term yields confusion:

100x

(1− x)(1− 4x)
= 100x ·

∑
n≥0

xn ·
∑
n≥0

4nxn.

Another approach: partial fraction decomposition

We want to find constants A and B such that

100x

(1− x)(1− 4x)
=

A

1− x
+

B

1− 4x
.

With A = 100
3 and B = −100

3 ,

100x

(1− x)(1− 4x)
=

100

3
· 1

1− 4x
− 100

3
· 1

1− x
.
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Using Partial Fractions

100x

(1− x)(1− 4x)
=

100

3
· 1

1− 4x
− 100

3
· 1

1− x
.

Expanding using power series yields:

100

3
· 1

1− 4x
− 100

3
· 1

1− x
=

100

3

∑
n≥0

4nxn −
∑
n≥0

xn

 .

Thus 2nd term’s contribution to coefficient of xn is:

100

3
(4n − 1).
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An explicit formula for pn

Recall

G (x) =
p0

1− 4x
− 100x

(1− x)(1− 4x)
.

First term’s contribution:

50 · 4n.

Second term’s contribution:

100

3
(4n − 1).

Combining contributions, closed-form formula for pn is:

pn = 50 · 4n − 100 · 4n − 1

3
.
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Exponential Generating Functions

Exponential generating functions are every similar to ordinary generating
functions.

Exponential Generating Function

Let {fn}n≥0 be a sequence of real numbers. Then the formal power series

F (x) =
∑
n≥0

fn
xn

n!
,

is called the exponential generating function of the sequence {fn}n≥0.

Intuition: Dividing by n! allows for fn to grow faster.
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Motivating Example

Recurrence Relation: Solve for an if a0 = 1, and an satisfies the
following recurrence

an+1 = (n + 1)(an − n + 1).

First few terms

a0 = 1

a1 = 2

a2 = 4

a3 = 9

a4 = 28

a5 = 125

This series grows too fast for an ordinary generating function. Therefore
an exponential generating function is used.
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Solving recurrence with exponential generating functions

Defining generating function:

A(x) =
∞∑
n=0

an
xn

n!
,

is the exponential generating function of the sequence {an}n≥0.

Expressing recurrence an+1 = (n + 1)(an − n + 1):

∞∑
n=0

an+1
xn+1

(n + 1)!
=
∞∑
n=0

an
xn+1

n!
−
∞∑
n=0

(n − 1)
xn+1

n!
.
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Solving recurrence cont.

∞∑
n=0

an+1
xn+1

(n + 1)!
=
∞∑
n=0

an
xn+1

n!
−
∞∑
n=0

(n − 1)
xn+1

n!
.

LHS = A(x)− 1

RHS first term: xA(x)

RHS second term: −x2ex + xex = (x − x2)ex

Plugging in above:

A(x)− 1 = xA(x)− x2ex + xex .

Rearranging yields,

A(x) =
1

1− x
+ xex .

Thus coefficient an for xn

n! is an = n! + n.
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The End
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